Supplementary Material ## **Supplementary Methods** The R programming language was used throughout the entire course of the study.¹ This open source software provided cutting edge functionalities for data mining, texting processing, machine learning¹ and statistical analysis². ## 1.1. Feature extraction The challenge with meta-analysis stems from the tedious process required to manually select publications with relevant information. The presented approach demonstrated the ability for the algorithm to automatically separate a database of publications into distinct categories. To maximize the effectiveness of the machine learning algorithm, feature extraction had to be performed on the raw text to transform the data into a more recognizable form for the algorithm. Natural language processing was the main technique used for feature extraction as it allowed for the text to be simplified, making it easier to obtain the meaning for each publication. The matrix was converted into a corpus structure which categorized all the words and arranged them for easy manipulation. Various text conversions were then done to strip off meaningless features. This included converting the words to lowercase, removing numbers, punctuation, special characters, extra white spaces, and removing stop words such as "the", "and" or "a". Stemming was then performed to reduce a derived word to its word stem. This essentially decreased the vocabulary by converting words with similar meaning to the exact same word. An example would be converting the words "running" and "ran" to the word "run". Since the preferred data format for machine learning algorithms is numerical, a document term matrix was created. This contained a summary of the number of occurrences for every single unique word in the title and abstract of each publication. The matrix was then normalized by weighing the values according to the frequency of each word which decreased the bias towards more often occurring words. Euclidean distances were then calculated for the frequencies to quantify the difference between a word or a group of words from another. ## 1.2. K means clustering Since the number of different categories was unknown, the problem was unsupervised. This means that it was entirely up to the algorithm to independently recognize the features. Each research paper, with the features extracted, was considered as one data point. The K means clustering algorithm was used. This algorithm was chosen for its consistency in identifying subtle features to differentiate the categories as seen from test runs on a mock dataset. The clustering algorithm is an optimization implementation. During initialization, the algorithm selects random starting points, also called centroids, to begin clustering. The data points that were closest to a centroid were grouped together, forming a cluster. New centroids were then found by calculating the midpoints of the new clusters. This process was repeated so during every iteration, the centroids move a slight distance. The objective function was to minimize the distance between the position of the current centroids and the position of the centroids in the previous iteration. The K means clustering algorithm was then used iteratively. During each iteration, the cluster of the smallest size was found and removed from the data set. This renewed data set was then clustered again with the smallest cluster removed. This process was repeated until the data set reached a size of less than 250 data points. 250 was chosen as it was manageable for manual checking. ## 1.3. Supervised machine learning classification To identify which cluster was the most relevant to the topic of interest, a supervised machine learning classification algorithm was used. Another PubMed search was done to provide the algorithm with correct and incorrect examples to aid its identification. The key words "diabetes" and "atrial fibrillation" were searched only in the titles for each publication. A similar process was performed to extract the titles and abstracts from the PubMed studies downloaded. This smaller dataset was then manually searched and labelled "relevant" or "irrelevant" depending on the contents of the title and abstract. In this study, 139 articles thought most likely to be relevant were identified by searching for the keywords "diabetes"/"diabetic" **and** "atrial fibrillation" in the **title**. These were reviewed and assigned to the labelled training set (26 studies that met the selection criteria and 113 that did not) by two experts. The classification algorithm chosen was the maximum entropy algorithm. This was based on the principle of maximum entropy. The method involves using guess parameters that fit the training data and selecting the ones that produced the largest entropy, or un-orderliness, in the data. A comparison was done between different classification algorithms such as: support vector machine, neural-network, random forest, decision tree, boosting, bagging, bayesian and lasso and elastic-net regularized generalized linear models. During a simulation of 100 repeated runs, the maximum entropy classification algorithm had a significantly higher average accuracy for text classification in comparison to other classification algorithms ($\mathbf{p} < 0.0001$). The individual publications in the different subgroups obtained from clustering were classified using the manually selected dataset as the training data. Since the machine learning algorithm had a fair amount of uncertainty, the subgroups were checked for their similarity with the training dataset to find the subgroup with the highest percentage similarity. This subgroup would then be considered to contain the highest probability of relevant publications. A search was also done to find the locations of the relevant publications obtained from the manual search for the training data. - Supplementary references R Core Team. R: A language and environment for statistical computing. 2013. Viechtbauer W. Conducting meta-analyses in R with the metafor package. *J Stat Softw*. 2010;36(3):1-48. **Table S1:** All 21 cohort/randomized studies utilized in the systematic review and meta-analysis. | First Author
(Year) | Date of
Enrolm
ent | Country | N
(%F) | Mean
age
(years
) | Mean
FU
(years) | Incident
Case of AF
(%) | IR (per 1000
person-years) | DM
diagnosis | AF
diag
nosis | Covariates in
model | |------------------------------|--------------------------|---------------------------|----------------|----------------------------|----------------------------|-------------------------------|-------------------------------------|------------------------------------|---------------------|---| | Kannel et al
(1982) | 1948-
1952 | USA | 5,191
(55) | 48.8 | 10.4
(M)
10.9
(F) | 98
(1.9%) | 17.1(F)
21.5(M) | NA | ECG | age | | Krahn et al
(1995) | 1948-
1992 | Canada | 3,983
(0) | 31.0 | 44.0 | 299 (7.5%) | <0.5 (age<50)
9.7 (age>70) | NA | ECG | age | | Ruigómez et
al (2002) | 1996-
1996 | UK | 6035
(54) | 61.7 | NA | 1,035
(17.1%) | 1.7 | NA | ECG | age, sex and CVD | | Frost et al (2005) | 1993-
2001 | Denmark | 47,589
(53) | 56.0 | 5.7 | 553 (1.2%) | 1.2 (F)
2.9 (M) | MRs | MRs | age, BMI, height,
smoking, alcohol,
Hyp, SBP, IHD,
CHF and VHD | | Aksnes et al
(2008) | 1997-
2004 | USA
/Germany
/Italy | 15,245
(58) | 67.0 | 4.2 | 780 (5.1%) | NA | FBG/
diabetes
medicati
on | ECG | age, sex, BMI,
SBP, DBP, heart
rate and
potassium level | | Watanabe et
al (2008) | 1996-
1998 | Japan | 28,449
(66) | 59.2 | 4.5 | 265 (1%) | 1.3 (F)
4.1 (M) | FBG | ECG | age and sex | | Nichols et al
(2009) | 1999-
2004 | USA | 34,744
(49) | 58.4 | 7.2 | NA | 6.6 (nondiabetics) 9.1 (diabetics) | FBG/
MRs | NA | age, sex, race,
smoking, SBP,
IHD, VHD, Hyp
and HF | | Rosengren et
al
(2009) | 1970-
1973 | Sweden | 6903
(0) | 51.5 | 34.3 (max) | 1,253
(18.2%) | 7.5 (nondiabetics), 7.1 (diabetics) | SR | ECG | age | | Smith et al
(2010) | 1991-
1996 | Sweden | 30,441
(40) | 58.0 | 11.2 | 1,430
(4.7%) | 6.3(M)
3.1(F) | MRs/
diabetes
medicati
on | ECG | age | |-------------------------------|--------------------------------|--------|-----------------|------|----------------------|------------------|--------------------------------------|--|-----------------|--| | Huxley et al
(2012) | 1990-
1992 | USA | 13,025
(50) | 57.0 | 14.5 | 1,311
(10.1%) | 4.51 (nondiabetics) 9.02 (diabetics) | FSG/
diabetes
medicati
on/MRs | ECG
/
MRs | age, sex, race,
CHD,FSG,
smoking, HF,
SBP, Hyp, BMI | | Schoen et al
(2012) | 2003-
2011 | USA | 34,720
(100) | 52.9 | 16.4 | 1,079
(3.1%) | 1.99 (nondiabetics) 3.97 (diabetics) | SR | ECG
/
MRs | age, sex, CVD,
IHD, BMI and
Hyp | | Fontes et al
(2012) | 1991-
1994
1998-
2001 | USA | 3,023
(55) | 59.0 | 10.0 | 279 (9.3%) | NA | FBG | ECG | age, sex, SBP,
Hyp, HF and BMI | | Thacker et al
(2013) | 2001-
2004 | USA | 1,385
(49) | 69.2 | 0.5
(at
least) | 285
(100)% | NA | MRs/
diabetes
medicati
on | ECG
/
MRs | age, sex, BMI,
Hyp, SBP, DBP,
CHD, VHD, HF
and stroke | | Perez et al
(2013) | 1994-
1998 | USA | 81,892
(100) | 63.4 | 9.8 | 8,252
(10.1%) | NA | SR | MRs | age, sex, race,
PAD, Hyp, HF,
CHD, BMI,
smoking, alcohol
and HLD | | Johnson et al
(2014) | 1974-
1992 | Sweden | 7,066
(14) | 57 | 26.2 | 983
(13.9%) | NA | FBG | MRs | age, sex, height,
BMI, SBP and
smoking | | Staszewsky et
al
(2015) | 2000-
2010 | Italy | 825,330
(49) | 65.1 | 9.0 | 57,965
(7.0%) | 7.4 (nondiabetics) 10.4 (diabetics) | MRs/
diabetes
medicati
on | ECG
/
MRs | age, sex,
medications, Hyp,
HF and PHA | | Son et al | 2002- | Korea | 206,013 | 49.0 | 6 | 3517 | 2.87 | diabetes | NA | age, sex, BMI, | | (2015) | 2010 | | (41.2) | | | (1.7%) | | medicati
on | | Hyp, IHD, HF | |--|---------------|---------------------------|-----------------------|------|-----|------------------|---|--|-----|---| | Zethelius et al
(2015) | 2005-
2012 | Sweden | 83,162
(42) | 64.1 | 6.8 | 4141 (5%) | 9.2 | MRs | ECG | age, sex,
cholesterol,
smoking, BMI,
education | | Thijs et al
(2016) | 2009-
2012 | USA/
Canada/
Europe | 221
(35.7) | 61.6 | 3.0 | 42
(19%) | NA | NA | ICM | none | | Pallisgaard
et al
(2016) | 1996-
2012 | Denmark | 5,081,0
87
(51) | 36.4 | NA | NA | 2.34 (age 18-
39),
1.52 (age 40-
46),
1.2 (age 65-
74),
0.99 (age 75-
100) | glucose-
lowering
medicati
on | MRs | age, sex and year,
Hpy, IHD, HF,
VHD | | Alves-
Cabratosa
et al
(2016) | 2006-
2011 | Spain | 262,892
(42) | 67.0 | 4.1 | 11,879
(4.5%) | 10.4
(nondiabetics)
13.3
(diabetics) | MRs/
diabetes
medicati
on | MRs | age, SBP, DBP
and LDLC | AF, atrial fibrillation; DM, diabetes mellitus; FU, follow-up; F, female; M, male; ECG,, electrocardiogram; FBG, fasting blood glucose; SR, self-reported; MRs, medical records; HF, heart failure; BMI, body mass index; CVD, cardiovascular disease; Hyp, hypertension; MI, myocardial infarction; CHF, congestive heart failure; VHD, valvular heart disease; SBP, systolic blood pressure; IHD, ischaemic heart disease; DBP, diastolic blood pressure; CHD, coronary heart disease; FSG, fasting serum glucose; PAD, peripheral arterial disease; HLD, Hyperlipidaemia; year, calendar year of patient data/time of study; PHA, past hospital admissions; LDLC, low-density lipoprotein cholesterol; IR, incidence rate; ICM, insertable cardiac monitoring. **Table S2:** All 8 case-control studies utilized in the systematic review and meta-analysis. | First Author
(Year) | Date of
Enrolment | Country | N
(%F) | Mean Age
(years) | Subjects | Prevalent AF | DM
Diagnosis | AF
Diagnosis | Covariates in model | |-----------------------------------|----------------------|---------|-----------------|---------------------|---------------------------------------|---|------------------------|-----------------|---| | Kannel et al
(1998) | 1968-1998 | USA | 4,731
(56) | 66.5 | 4,731
No Control
Group | 562 cases | MRs | ECG/
MRs | Age, sex, Hyp, CHD, HF,
VHD | | Alvarez et
al (1999) | 1996-1997 | Spain | 1,000
(NA) | 64.6 | 300 AF,
700
controls | 300 cases | NA | NA | none | | Movahed et
al (2005) | 1990-2000 | USA | 845,748 (3) | 65.1 | 293,124
DM,
552,624
controls | 43,674 cases (14.9%), 57,077 controls (10.3%) | MRs | MRs | Age, sex, CHF, CAD and LVH | | Johansen et
al (2008) | 2005 | Norway | 154
(31) | 75.0 | 46 AF,
108
controls | NA | OGTT | ECG | None | | Dublin et al
(2010) | 2001-2004 | USA | 3613
(59) | 70.3 | 1,410 AF,
2,203
controls | NA | MRs | MRs | Age, sex, Hyp, BMI and year, race smoking, SBP, history, TC | | Méndez-
Bailón et al
(2016) | 2004-2013 | Spain | 214,457
(52) | 72.7 | 214,457
AF,
Unknown
controls | NA | MRs | MRs | Age and year | | Sun et al
(2016) | 2013-2013 | China | 11,341
(54) | 53.8 | 1,171 DM,
10,170
controls | 53 cases (4.7%),
14 controls (0.1%) | FBG | ECG | Age, sex, BMI, SBP,
DBP, TC, TG, LDLC,
HDLC, smoking, alcohol,
MI, LLVEF and LVH | | Dahlqvist
et al
(2017) | 2001-2013 | Sweden | 216,238
(45) | 35.5 | 36,258
DM,
179,980
controls | 3631 cases (2%), 2882 controls | diabetes
medication | MRs | age, sex, education,
birthplace, CHD, HF,
VHD, stroke, cancer | CAD, coronary artery disease; LVH, left ventricular hypertrophy; TC, total cholesterol; TG, triglycerides; HDLC, high-density lipoprotein cholesterol; LLVEF, low left ventricular ejection fraction; OGTT, oral glucose tolerance test; history, family history of AF; Other abbreviations see S1 Table. **Table S3:** The 9 initially selected relevant studies that were excluded from the systematic review and meta-analysis. | First Author
(Year) | Date of
Study | Country | Subjects | Mean Age
(years) | Mean
FU
(years) | Incident
Case of
AF (%) | Covariates in Model | Reasons to Exclude | |-------------------------------|------------------|----------------|-----------------|---------------------|-----------------------|-------------------------------|---|---| | Benjamin et al
(1994) | 1948-1952 | USA | 5,209 | 67 | 40.0 | NA | Age, Hyp, smoking, diabetes, MI, CHF and VHD | Duplicated dataset | | Benjamin et al
(1998) | 1948-1952 | USA | 1863
(52) | 75.2 | 40.0 | NA | NA | No quantitative estimate for the risk ratio for AF in DM patients was provided | | Sun et al (2010) | NA Review paper thus no additional information | | Huxley et al
(2011) | NA Meta-Analysis paper thus no additional information | | Sun et al
(2015) | 2013 | China | 11341 | 53.8 | NA | NA | Age, gender, BMI, BP, FBG, TC, TG, smoking, drinking, physical activity, hyp, MI, history, LLVEF, rate and year | Duplicated dataset | | Fatemi et al
(2014) | 1999-2013 | USA/
Canada | 10,082 | 62.2 | 7.2 | 159
(1.58%) | age, weight, DBP, HR and
HF | No quantitative estimate
for the risk ratio for AF in
DM patients was provided | | Grundvold et al
(2015) | 1999-2009 | Sweden | 7,169 | 60.0 | 4.6 | 287
(4.0%) | age, sex, BMI, AP and SBP | No quantitative estimate
for the risk ratio for AF in
DM patients was provided | | Lee et al (2016) | 2002-2007 | Korea | 40,500 | 62.0 | 5.9 | 1,261
(3.1%) | age, sex, Hyp, DLM, HF,
COPD, MI, stroke or TIA,
ESRD, low income | No quantitative estimate
for the risk ratio for AF in
DM patients was
provided, only risk ratio
for comparing DR to DM
was given | | Méndez-Bailón
et al (2017) | 2004-2013 | Spain | 214,457
(52) | 72.7 | NA | NA | age and year | Duplicated dataset | AP, angina pectoris; DLM, dyslipidaemia; ESRD, end-stage renal disease; COPD, chronic obstructive pulmonary disease; TIA, transient ischemic attack; AF, atrial fibrillation; DM, diabetes mellitus; FU, follow-up; F, female; M, male; ECG,, electrocardiogram; FBG, fasting blood glucose; SR, self-reported; MRs, medical records; HF, heart failure; BMI, body mass index; CVD, cardiovascular disease; Hyp, hypertension; MI, myocardial infarction; CHF, congestive heart failure; VHD, valvular heart disease; SBP, systolic blood pressure; IHD, ischaemic heart disease; DBP, diastolic blood pressure; CHD, coronary heart disease; FSG, fasting serum glucose; PAD, peripheral arterial disease; HLD, Hyperlipidaemia; year, calendar year of patient data/time of study; PHA, past hospital admissions; LDLC, low-density lipoprotein cholesterol; IR, incidence rate. **Table S4:** Newcastle-Ottawa quality assessment scale (NOS)/modified Jadad score for the 21 cohort/randomized studies included. | First Author
(Year) | Representativeness of the exposed cohort | Selection of
the non-
exposed
cohort | Ascertai-
nment of
exposure | Outcome of interest not present at start of study | Comparability | Assessment of outcome | Adequacy
of duration
of follow-
up | Adequacy
of
complete-
ness of
follow-up | Total
score
(0-9) | |---------------------------|--|---|-----------------------------------|---|-----------------|-----------------------|---|---|-------------------------| | Kannel et al
(1982) | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 7 | | Krahn et al
(1995) | 1 | | 1 | 1 | | 1 | 1 | 1 | 6 | | Ruigómez
et al (2002) | 1 | 1 | 1 | | | 1 | 1 | 1 | 6 | | Frost et al (2005) | 1 | 1 | 1 | 1 | 1 (age) | 1 | 1 | 1 | 8 | | Aksnes et al
(2008) | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 7 | | Watanabe et
al (2008) | 1 | 1 | 1 | 1 | 2 (age, gender) | 1 | 1 | 1 | 9 | | Nichols et al
(2009) | 1 | 1 | 1 | 1 | 2 (age, gender) | 1 | 1 | 1 | 9 | | Rosengren
et al (2009) | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 7 | | Smith et al (2010) | 1 | 1 | 1 | 1 | 1 (age) | 1 | 1 | 1 | 8 | | Huxley et al (2012) | 1 | 1 | 1 | 1 | 2 (age, gender) | 1 | 1 | 1 | 9 | | Schoen et al
(2012) | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 7 | | Thacker et
al (2012) | 1 | 1 | 1 | | | 1 | 1 | 1 | 6 | |--|---|---|---|---|-----------------|---|---|---|---| | Fontes et al (2012) | 1 | | 1 | 1 | | 1 | 1 | 1 | 6 | | Perez et al
(2013) | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 7 | | | 1 | 1 | 1 | 1 | 1 (age) | 1 | 1 | 1 | 8 | | Thijs et al
(2015)* | | | | | | | | | 5 | | | 1 | 1 | 1 | 1 | 2 (age, gender) | 1 | 1 | 1 | 9 | | Zethelius et
al (2015) | 1 | 1 | 1 | 1 | 1 (gender) | 1 | 1 | 1 | 8 | | Pallisgaard
et al
(2016) | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 7 | | Alves-
Cabratosa
et al
(2016) | 1 | 1 | 1 | 1 | 2 (age, gender) | 1 | 1 | 1 | 9 | | Son et al (2016) | | 1 | 1 | 1 | 1 (gender) | 1 | 1 | 1 | 8 | ^{*} Modified Jadad score for the included randomized trial: 2 (randomization), 2 (concealment of allocation), 0 (double blinding) and 1 (withdraws/dropouts). Table S5: Newcastle-Ottawa quality assessment scale (NOS) for the 8 case-control studies included in this study | First Author
(Year) | Adequate
definition
of cases | Represent-
ativeness of
cases | Selection
of
controls | Definition
of
controls | Comparability | Ascertainment
of exposure | Same
method of
ascertain-
ment for
subjects | Non-
response
rate | Total
score
(0-9) | |------------------------------------|------------------------------------|-------------------------------------|-----------------------------|------------------------------|-----------------|------------------------------|---|--------------------------|-------------------------| | Kannel et al
(1998) | 1 | 1 | | | | 1 | 1 | 1 | 5 | | Álvarez et al
(1999) | 1 | 1 | | 1 | 1 (age) | 1 | 1 | 1 | 7 | | Movahed et
al (2005) | 1 | 1 | 1 | 1 | 2 (age, gender) | 1 | 1 | 1 | 9 | | Johansen et
al (2008) | 1 | 1 | 1 | 1 | 2 (age, gender) | 1 | 1 | 1 | 9 | | Dublin
et al
(2010) | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 7 | | Méndez-
Bailó n et
al (2016) | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 7 | | Sun et al
(2016) | 1 | 1 | 1 | 1 | 1 (gender) | 1 | 1 | 1 | 8 | | Dahlqvist et
al (2017) | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 7 | Figure S1 Figure S1. PRISMA 2009 Flow diagram. Figure S2 ### **Classified Clusters by Machine Learning** #1 #2 #3 #4 Letter. Surgery, Stroke Stroke case study bypass risk prevention #5 #6 #8 #7 Risk Heart **Mechanisms** Catheter factors failure ablation #9 #10 #11 #12 Mortality, Left Review Care, man- agement #14 Remainder paper #13 Stroke, mortality **Figure S2. Visualization of the clusters obtained from K-means clustering and the associated key words of each cluster.** Cluster #5 (with a key word of risk factor) was the cluster of interest and was successfully identified by the supervised machine learning classification algorithm. Cluster #14 includes all left over literature which were not a part of clusters #1-#13. atrium ICD Figure S3. Publication bias, and the impact of study location and follow up years on estimated RRs. A. Funnel plot of the publication bias found no publication bias. B. Estimated RRs grouped by different continents. C. Individual RRs versus mean follow up year. RR, relative risk; CI, confidence interval. Figure S4 # Most Conservative RR Estimates Using the Minimal and Multivariate Risks Provided by Included Individual Studies Figure S4. Estimated RRs of AF in patients with DM in reported minimal (age-and/orgender/none) versus multivariate adjusted reports using the 29 studies. DM, diabetes milieus; AF, atrial fibrillation; RR, relative risk; CI, confidence interval. Figure S5 # Multivariate RR Estimates for Studies Without Explicitly Defined Diabetes Type Figure S5. Estimated RRs of AF in patients without explicitly defined DM subtypes using the multivariate adjusted model. DM, diabetes milieus; AF, atrial fibrillation; RR, relative risk; CI, confidence interval. Figure S6 ## RR Estimated for Type 2 Diabetes Using the Multivariate Risks Figure S6. Estimated RRs of AF in patients with Type 2 DM using the multivariate adjusted model. DM, diabetes milieus; AF, atrial fibrillation; RR, relative risk; CI, confidence interval.